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Abstract

A fast method for solving �o-equations of the form �ov ¼ T v is presented, where v and T are complex-valued functions

of two real variables. The multigrid method of Vainikko [Int. Soc. Anal. Appl. Comput. 5 (2000)] is adapted to the

problem with a FFT implementation. Convergence with rate OðhÞ is proved for the method applied to equations of the

form above. One-grid and two-grid versions of the method are implemented and their effectiveness is demonstrated on

an application arising in electrical impedance tomography (EIT).

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we consider the numerical computation of the solution v : R2 ! C to the �o-equation

ovðkÞ ¼ �T ðkÞvðkÞ ð1:1Þ

with the asymptotic condition limjkj!1 vðkÞ ¼ 1: Here, the �o-operator is defined by

�o ¼ ok ¼
o

o�k
¼ 1

2

o

ok1

�
þ i

o

ok2

�
ð1:2Þ

and the multiplier T : R2 ! C is assumed to have compact support. In the sequel we identify k 2 R2 with

k 2 C and use k ¼ ðk1; k2Þ and k ¼ k1 þ ik2 interchangeably.

By convolving in (1.1) with the Green�s function 1=pk for �o, it follows that (1.1) together with the as-

ymptotic condition is equivalent to the integral equation
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vðkÞ ¼ 1� 1

p

Z
R2

T ðk0Þ
k � k0

vðk0Þdk01 dk02; k0 ¼ k01 þ ik02 2 C; ð1:3Þ

or

vðkÞ ¼ 1� 1

pk
� ðT vÞ; ð1:4Þ

where � denotes convolution. We consider (1.4) as an equation in an appropriate function space on a

bounded domain containing the support of T , and to solve this equation numerically we adapt the multigrid

method introduced by Vainikko [37]. This method is a fast method based on FFT for solving integral

equations with weakly singular kernels.

The Eq. (1.1) arises in connection with problems in inverse scattering and nonlinear evolution equations.

In the context of inverse scattering, the idea behind the �o-method is to apply the �o-operator to an integral

equation that governs the solution of the scattering problem and derive a �o-equation that the solution
satisfies. This method leads to linear integral equations for reconstructing the eigenfunctions and the po-

tential and also provides necessary conditions which the scattering data must satisfy. The �o-method was

first used by Beals and Coifman [6] for the quantum inverse scattering problem in 1-D and was extended to

2-D problems in [2] in the context of the Kadomtsev–Petviashvili (KP) equation which has applications in

water waves, stratified fluids and plasma physics. See also the references [7,8,18,28,31] for applications to

multidimensional problems. More recently, the �o-method has been used in inverse problems in medical

imaging including in electrical impedance tomography (EIT) by Nachman [26,27] and Brown–Uhlmann

[11] and in positron-emission tomography (PET) by R. Novikov [29,30]. Out of the numerous nonlinear
evolution equations where (1.1) is useful, we single out the Novikov–Veselov equations introduced by

Novikov and Veselov [40] and considered by Boiti et al. [10] and Tsai [36] and the Davey–Stewartson

equation, see [1,9,15].

The numerical solution of (1.1) was considered by Siltanen et al. [34] for EIT in the numerical algorithm

based on Nachman�s uniqueness proof for the 2-D inverse conductivity problem [26]. In [24,25,34,35] Eq.

(1.1) was solved numerically by a 2-D adaptation of the method of product integrals [4]. The numerical

solution of (1.1) has also been applied to EIT by Knudsen [20] in the numerical algorithm based on the

Brown–Uhlmann uniqueness proof for the 2-D inverse conductivity problem [11]. A fast, direct algorithm
for the Lippmann–Schwinger equation in two dimensions is found in [13].

We describe both one- and two-grid implementations of Vainikko�s method. Details of this method for

the Lippmann–Schwinger equation can be found in [33,38]. This method has been implemented in [24] for

the computation of Faddeev�s exponentially growing solutions [17] and in [19] for the numerical compu-

tation of the solution to a scattering problem. Furthermore, we will discuss the complexity and accuracy of

the method and show that the complexity of the method is OðM2 logðMÞÞ for obtaining the solution with

accuracy order OðhÞ; h ¼ C=M ; on a plane grid of size M2:
This paper is organized as follows. In Section 2 we give the details of the fast algorithm and in Section 3

we describe the two-grid extension. Then in Section 4 we analyze the accuracy and complexity of the

method. Finally in Section 5 we provide an example of the application of the method to electrical im-

pedance tomography.
2. The fast algorithm

In this section we describe a fast algorithm for numerical solution of the integral equation (1.3). The
method is based on the work of Vainikko [37].
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We wish to consider (1.3) in the space C0;1ðR2Þ; the space of Lipschitz continuous and bounded functions

on R2: A suitable assumption on the function T is then the following:

[A1] Properties of T . We assume that T is compactly supported in an open set X and that T 2 C0;1ðR2Þ.

With such T the Eq. (1.3) is uniquely solvable:

Lemma 2.1. Assume T satisfies assumption A1. Then (1.3) has a unique solution v 2 C0;1ðR2Þ with the property
that v� 1 2 LpðR2Þ; 2 < p < 1:

Proof. It is well known that when T 2 L2ðR2Þ is compactly supported then the integral equation (1.3) has a

unique solution v which satisfies the condition ðv� 1Þ 2 LpðR2Þ for 2 < p < 1 (see for instance [22,

Proposition 2.2] for a proof of this fact).
Concerning the smoothness of v we note that T v 2 LpðR2Þ; and hence v� 1 ¼ �ðpkÞ�1 � ðT vÞ 2 C0;aðR2Þ

for any a < 1; see [39, Theorem 1.21]. From this fact we deduce that T v 2 C0;aðR2Þ \ LpðR2Þ and hence from

[39, Theorem 1.34] we conclude that v� 1 ¼ �ðpkÞ�1 � T v 2 C1;aðR2Þ: The claim now follows from the

continuous embedding C1;aðR2Þ � C0;1ðR2Þ:

The fast algorithm is based on the following crucial observations:

• If we know vðkÞ for k 2 suppðT Þ, we can compute v in the whole plane by v ¼ 1� ðpkÞ�1 � ðT�vÞ.
• Let q > 0 be such that suppðT Þ � Bð0; qÞ, where Bð0; qÞ is the open disc with radius q and center at the

origin. If k 2 suppðT Þ then the integral in (1.4) does not involve the values of the convolution kernel

ðpk0Þ�1
for jk0jP 2q.

We will consider a periodic equation allowing fast solution and giving the solution to the full-plane

equation. Choose s > 2q and set S :¼ ð�s; sÞ2; see Fig. 1.Consider the following equation for functions that
are 2s-periodic in k1 and k2:
supp(T)

(s,s)

S

(s/2,s/2)

Fig. 1. The large square S determines the periodization of the �o-equation. The circle and both of the squares are centered at the origin,

and the radius of the circle is q.
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wðkÞ ¼ f ðkÞ �
Z s

�s

Z s

�s
gðk � k0ÞT ðk0Þwðk0Þdk01 dk02; ð2:1Þ

or more briefly

½I þ g � ðT ��Þ�w ¼ f ; ð2:2Þ

where � denotes convolution on the torus and f satisfies the following:

[A2] Smoothness of f . We assume that f 2 C0;1ðR2Þ is 2s-periodic in k1; k2:

Clearly, f � 1 satisfies A2. The 2s-periodic function g appearing in (2.1) and (2.2) is given by

gðkÞ ¼ ðpkÞ�1
for k 2 S. (It is also possible to truncate g sharply or smoothly at jkj ¼ 2q.) It is easily

checked that

vjsuppðT Þ ¼ wjsuppðT Þ;

and that unique solvability of (1.3) is equivalent to that of (2.1) with f � 1.

Next, we discretize (2.2). Choose a positive integer m, denote M ¼ 2m; and set h ¼ 2s=M . Note that the
choice of M is taken mainly for simplicity; the algorithm would work just as well when M is a product of

small primes. Define a grid Gm � S by

Gm ¼ fjh j j 2 Z2
mg;

Z2
m ¼ j

�
¼ ðj1; j2Þ 2 Z2j � 2m�1

6 jl < 2m�1; l ¼ 1; 2
�
:

ð2:3Þ

Note that the number of points in Gm is M2. To each grid point x 2 Gm we attach a cell, an open set that

contains x. The cells are given by

Bj;h ¼ ðx1; x2Þ 2 R2j jl

��
� 1

2

�
h < xl < jl

�
þ 1

2

�
h; l ¼ 1; 2

�
ð2:4Þ

for j 2 Z2
m.

Let u : R2 ! C be a 2s-periodic function that is continuous, and define the grid approximation
uh : Z

2
m ! C of u by

uhðjÞ ¼ uðjhÞ: ð2:5Þ

However, the Green�s function ðpkÞ�1
is singular at k ¼ 0, and (2.5) cannot be readily used. We set

ghðjÞ ¼ gðjhÞ; for j 2 Z2
m n 0;

0; for j ¼ 0;

�
ð2:6Þ

and since the singularity at k ¼ 0 is integrable, the error caused by (2.6) becomes small when the discret-

ization is refined.

We discretize the periodic convolution operator

ðAuÞðkÞ ¼ ðg � uÞðkÞ ¼
Z s

�s

Z s

�s
gðk � k0Þuðk0Þdk01 dk02 ð2:7Þ

with the formula

A u ¼ F�1 Fg �Fuð Þ; ð2:8Þ
h h h h
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whereF is the discrete Fourier transform and � denotes component-wise multiplication. The practical value

of formula (2.8) is that application of the operator Ah can be implemented using the fast Fourier transform.

The discrete version of (2.2) is now

½Ih þ AhðTh ��Þ�wh ¼ fh; ð2:9Þ

where Ih denotes the identity matrix of sizeM2 and Th� denotes component-wise multiplication by the matrix

½ThðjÞ�. Solvability of this equation (for sufficiently large m) is a consequence of the solvability of (2.1). To

avoid explicit representation of the inverse operator ½Ih þ AhðTh ��Þ��1
in the numerical solution of (2.9) we

employ an iterative method, such as GMRES [32].

Note that since the operator ½Ih þ AhðTh ��Þ� is real-linear but not complex linear, the real and imaginary

parts of the complex solution vector wh must be kept separate when using GMRES. An algorithm which

avoids the use of the equivalent linear system of doubled size is found in [16].
3. Two-grid extension of the algorithm

We show how a two-grid method gives extra resolution with reasonable computational expense com-

pared to solving (2.9) iteratively on one grid. We construct a two grid scheme with one fine grid and one

coarse grid. We then solve (2.9) on the coarse grid and refine the solution on the fine grid.

Choose 0 < m� < m and define the fine grid Gm by (2.3) and its cells by (2.4). We next introduce the
coarse grid Gm� and its panels B�

j�;h� (we call the cells of the coarse grid panels). The following two re-

quirements must be fulfilled [37, section 5.12]:

• [R1] Every point of the coarse grid must belong to the fine grid: Gm� � Gm.

• [R2] Every cell Bj;h of the fine grid must be contained in some panel Bj�;h� , and conversely, the closure of

any panel must be the union of some collection of closures of fine grid cells.

Denote M� ¼ 2m
�
and set h� ¼ 2s=M�; then 0 < h < h�. Define the coarse grid Gm� equivalently to (2.3):

Gm� :¼ fj�h�jj� 2 Z2
m�g: ð3:1Þ

Requirement R1 clearly holds: the coarse grid is an equispaced collection of points in Gm. The defi-

nition of panels must, however, be different from the definition of fine grid cells: the coarse grid points

cannot be centerpoints of square cells without violating R2. We give the following definition as a

compromise:

B�
j�;h� :¼ int

[
j2Jj�

Bj;h

0
@

1
A; ð3:2Þ

where int denotes topological interior and

Jj� :¼ j 2 Z2
mjj�l

�
6 jl < j�l þ 2m�m�

h; l ¼ 1; 2
�
:

An illustration of the coarse and fine grids is found in Fig. 2. Definitions 2.5 and 2.6 apply for the coarse

grid just by changing j to j� and h to h�.
We require operators for transitions from one grid to the other. The operator phh� taking functions

Z2
m� ! C on the coarse grid to functions Z2

m ! C on the fine grid is defined by piecewise constant in-

terpolation:

ðphh�wh� ÞðjÞ ¼ wh� ðj�Þ for unique j� 2 Z2
m� for which Bj;h � B�

j�;h� : ð3:3Þ



Fig. 2. Left: coarse and fine grid of the two-grid method corresponding to m� ¼ 2 and m ¼ 4. Small dots denote the points of the fine

grid and big dots denote the points of the coarse grid. Star denotes the origin (that belongs to both grids). Lines indicate boundaries of

panels. Note that the coarse grid collocation points are regularly distributed but are not at the center of panels. Right: same as left plot

but m� ¼ 3 and m ¼ 6.
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The fine-to-coarse operator ph�h is simply restriction:

ðph�hwhÞðj�Þ ¼ whðjÞ for unique j 2 Z2
m for which jh ¼ j�h�: ð3:4Þ

The two-grid scheme is based on the observation that the solution wh of (2.9) satisfies

wh ¼ f 00
hh� �T00

h;h�wh; ð3:5Þ

where

f 00
hh� ¼ fh � phh� ðIh� þ Ah� ðTh� ��ÞÞ�1ph�hAhðTh ��Þfh;

and the operator T00
h;h� is defined by

T00
h;h� ¼ ½Ih � phh� ðIh� þ Ah� ðTh� ��ÞÞ�1ph�hðIh þ AhðTh ��ÞÞ�AhðTh ��Þ: ð3:6Þ

The point is that when h� is sufficiently small then the operator norm ofT00
h;h� is small (see (4.15) below), and

hence I þT00
h;h� can be inverted by a Neumann series, and the solution to (3.5) can be computed by

wh ¼ ðIh þT00
h;h� Þ

�1f 00
h;h� ¼

X1
n¼0

ð�T00
h;h� Þ

nf 00
h;h� :

By using again (4.15) it is easy to verify that the Neumann series can be approximated by using the recursive

formula

wN
h ¼ �T00

h;h�w
N�1
h þ f 00

h;h�

with any given initial choice for w0
h: For our purpose the natural choice for w0

h is the coarse grid solution.

This gives the following two-grid scheme for computing an approximate solution to (2.9):

w0
h ¼ phh�wh� ;

For n ¼ 0 : ðN � 1Þ
rnh ¼ wn

h þ AhðTh � wn
hÞ � fh

wnþ1
h ¼ wn

h � rnh � phh� ðIh� þ Ah� ðTh� ��ÞÞ�1ph�hAhðTh � �rnhÞ

ð3:7Þ
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Note that m� has to be large enough for the inverse of the coarse grid operator ðIh� þ Ah� ðTh� ��ÞÞ to exist.

This operator is then inverted using the one-grid scheme described in Section 2.

When we want to apply the two-grid method for solving (2.9) on a grid of size given by the parameter m;
the size of the coarse grid given by the parameter m� and the iteration number N has to be chosen. These

choices are related to the accuracy of the method and will be discussed in Section 4.
4. Accuracy and complexity of the method

The one-grid method described in Section 2 is inspired by method (5.13) in [37], but since our as-

sumptions are slightly different, the convergence rates in [37, Theorem 5.1] are not immediate. However, the
expected convergence rates follow from a proof analogous to that of [37, Theorem 5.1]. We will outline the

main steps below.

The theory of discrete convergence is used in [37] to analyze the convergence of the discretization

method. We also adopt this language for the proofs. The following definitions are taken from [37].

Definition 4.1. Let E be a Banach space and let Eh be a family of Banach spaces parameterized by hP 0 (all

spaces real or all complex). Let ph 2 BðE;EhÞ be the so-called connection operators satisfying

kphukEh
! kukE:

A family fuhg0<h<H of elements uh 2 Eh is called discretely convergent to an element u 2 E if
kuh � phukEh

! 0 as h ! 0.

Definition 4.2. A family fuhg of elements uh 2 Eh is called discretely compact if any sequence fuhng formed

by the elements of the family with hn ! 0 contains a discretely convergent subsequence.

Definition 4.3. A family of linear bounded operators Th 2 LðEh;EhÞ is called discretely convergent to

T 2 LðE;EÞ if the following implication holds: discrete convergence of a family of elements fuhg 2 Eh to an
element u 2 E implies discrete convergence of Thu to Tu.

Definition 4.4. The bounded linear operator Th converges to T discretely compactly if the implication in

Definition 4.3 holds and

lim sup
h!0

kuhkEh
< 1 implies fThuhg is discretely compact: ð4:1Þ

We extend Definitions (4.3) and (4.4) to include conjugate linear operators. Note that Lemmas 4.1, 4.2

and Theorem 4.1 of [37] hold for conjugate linear operators as well.

For our purpose we let E ¼ CðSÞ, the set of continuous functions on the set S equipped with the su-

premum norm, and let Eh ¼ M2m�2m be the space of 2m � 2m matrices equipped with the supremum norm.

Further, we define the connection operators ph 2 BðE;EhÞ by ðph/ÞðjÞ ¼ /ðjhÞ; j 2 Z2
m:

Theorem 4.1. Let conditions A1 and A2 hold for Eq. (2.2). Then there exists m0 > 0 such that for m > m0 the

system (2.9) has a unique solution wh with

max
j2Z2

m

jwhðjÞ � wðjhÞj6Ch; ð4:2Þ

where h ¼ 2s=2m and w is the unique solution to (2.2).
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Proof. Define the operators T 2 BðEÞ;Th;T
00
h 2 BðEhÞ by

TuðkÞ ¼ 1

p

Z
S

T ðk0Þ
k � k0

uðk0Þdk01 dk02; k 2 S
ThuhðjÞ ¼
1

p

X
l2Z2

m

Z
Bl;h

T ðk0Þ
jh� k0

dk01 dk
0
2uhðlÞ;
T00
huhðjÞ ¼ h2

X
l2Z2

m

ghðj� lÞThðlÞuhðlÞ:

Note that these operators are compact in the relevant spaces. The proof is divided into three steps:
1. Show the existence of h0 > 0 such that for 0 < h < h0 the system (2.9) has a unique solution wh with

max
j2Z2

m

jwhðjÞ � wðjhÞj6CkT00
hphw� phTwkEh

: ð4:3Þ

2. Show that

kThphw� phTwkEh
6Ch ð4:4Þ

for the solution w 2 E to (2.2).

3. Show that

kTh �T00
hkBðEhÞ 6Ch: ð4:5Þ

It is clear that (4.2) follows from (1) to (3) by the triangle inequality.

Claim (1) follows from [37, Theorem 4.1], since Th ! T discretely compactly. For a complete proof of

this fact we refer to the proof of [37, Lemma 5.2], which is easily adapted to our setting.

To prove (4.4) we use the fact that the solution w to (2.2) is Lipschitz continuous in S: Hence, it follows
that

kThphw� phTwkEh
¼ max

j2Z2
m

X
l2Z2

m

Z
Bl;h

T ðk0Þ
jh� k0

ðphwðlÞ � wðk0ÞÞdk01 dk02

������
������

6 max
k2S

jT ðkÞj
Z
S

1

jk � k0j dk
0
1 dk

0
2 max

l2Z2
m

z1 ;z22Bl;h

jwðz1Þ � wðz2Þj

6C max
l2Z2

m;
z1 ;z22Bl;h

jz1 � z2j6Ch:

Concerning (4.5) note that

kTh �T00
hkBðEhÞ ¼ max

j2Z2
m

X
l2Z2

m

jðThÞjl � ðT00
hÞjlj;

where for j; l 2 Z2
m
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ðThÞjl ¼
Z
Bl;h

T ðk0Þ
jh� k0

dk01 dk
0
2;
ðT00
hÞjl ¼

h2 ThðlÞ
jh�lh ; l 6¼ j;

0; l ¼ j:

�

By using the Lipschitz continuity of T it can then be proved that

X
l 6¼j

jðThÞjl � ðT00
hÞjlj ¼

X
l 6¼j

Z
Bl;h

T ðk0Þ
jh� k0

������ � T ðlhÞ
jh� lh

�
dk01 dk

0
2

�����6Ch:

Moreover,

jðThÞjjj ¼
Z
Bj;h

T ðk0Þ
jh� k0

dk01 dk
0
2

�����
�����6 max

k2Bj;h

jT ðkÞj
Z
jk0 j<

ffiffi
2

p
h

1

jk0j dk
0
1 dk

0
2 6Ch:

Hence,

kTh �T00
hkBðEhÞ ¼ max

j2Z2
m

jðThÞjjj
 

þ
X
l 6¼j

jðThÞjl � ðT00
hÞjlj

!
6Ch: �

Concerning the complexity of the one-grid method we note that with an FFT implementation one appli-

cation of the discrete convolution operator (2.8) is done in OðM2 logMÞ arithmetical operations. Hence, to

solve (2.9) using an iterative solver with a fixed upper bound on the numbers of iterations also requires
OðM2 logMÞ arithmetical operations.

Recall the definition of the operator T00
h;h� from (3.6) and note that

T00
h;h� ¼ ðIh � phh�ph�hÞT00

h þ phh� ðIh� þT00
h� Þ

�1ðph�hT00
h �T00

h�ph�hÞT00
h:

Define Th;h� by

Th;h� ¼ ½Ih � phh� ðIh� þTh� Þ�1ph�hðIh þThÞ�Th

¼ ðIh � phh�ph�hÞTh þ phh� ðIh� þTh� Þ�1ðph�hTh �Th�ph�hÞTh: ð4:6Þ

We first prove a lemma needed to establish the convergence rate of the two-grid method.

Lemma 4.1. For h� sufficiently small and 0 < h < h� we have

kTh;h�kBðEh;Eh� Þ 6Ch� log h�:

Proof. We want to prove that

kðIh � phh�ph�hÞThkBðEhÞ 6Ch� log h�; ð4:7Þ
kðph�hTh �Th�ph�hÞThkBðEh;Eh� Þ 6Ch� log h�: ð4:8Þ
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Then the conclusion follows from (4.6) and the fact that for h� sufficiently small, the operator Ih� þTh� is

invertible with uniformly bounded inverse (see [37, Lemma 4.2]).

For wh 2 Eh, define the piecewise constant function ŵh 2 E by

ŵhðkÞ ¼
X
j2Z2

m

whðjÞnj;hðkÞ; ð4:9Þ

where

nj;hðkÞ ¼
1; if k 2 Bj;h;
0; otherwise:

�
ð4:10Þ

Then kŵhkE ¼ kwhkEh
and

TŵhðjhÞ ¼
1

p

Z
S

T ðk0Þ
jh� k0

ŵhðk0Þdk01 dk02 ¼
1

p

X
l2Z2

m

Z
Bl;h

T ðk0Þ
jh� k0

dk01 dk
0
2whðlÞ ¼ ThwhðjÞ:

From [39, Theorem 1.22] it is known that

jTuðxÞ �TuðyÞj6CkukEjx� yj logðjx� yjÞ:

In particular, we have

jTŵhðlhÞ �TŵhðjhÞj6CkŵhkEjlh� jhj logðjlh� jhjÞ; ð4:11Þ

which implies

jThwhðlÞ �ThwhðjÞj6CkwhkEh
jlh� jhj logðjlh� jhjÞ: ð4:12Þ

By (3.3) and (3.4) we see that

jðIh � phh�ph�hÞThwhðjÞj ¼ jThwhðjÞ � phh�ph�hThwhðjÞj ¼ jThwhðjÞ �Thwhðj�Þj;

where j� is the unique j� 2 Z2
m� such that Bj;h � B�

j�;h� . Then by (4.12)

jðIh � phh�ph�hÞThwhðjÞj6CkwhkEh� logðh�Þ;

since j and j� are in the same panel. This gives (4.7).

Now let vh denote Thwh. Then

ððph�hTh �Th�ph�hÞvhÞðj�Þ ¼ Thvhðj�Þ �Th�ph�hvhðj�Þ

¼ 1

p

X
l2Z2

m

Z
Bl;h

T ðk0Þ
j�h� k0

dk01 dk
0
2vhðlÞ �

1

p

X
l�2Z2

m�

Z
B�
l� ;h�

T ðk0Þ
j�h� � k0

dk01 dk
0
2vhðl�Þ

¼ 1

p

X
l2Z2

m

Z
Bl;h

T ðk0Þ
j�h� k0

dk01 dk
0
2ðvhðlÞ � vhðl�ÞÞ;

where l� is defined by (3.4). Since l and l� are in the same panel we conclude that

jððph�hTh �Th�ph�hÞwhÞðj�Þj6 sup
k2S

Z
S

T ðk0Þ
k � k0

����
����dk01 dk02

� �
CkwhkEh

h� logðh�Þ;

which proves (4.8). �
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The following theorem gives the convergence rate of the two-grid method.

Theorem 4.2. Let conditions A1 and A2 hold for Eq. (2.2). Then for sufficiently small h� > 0 and 0 < h < h�,
the function wN

h in (3.7) satisfies

max
j2Z2

m

jwN
h ðjÞ � whðjÞj6 max

j2Z2
m

jw0
hðjÞ � whðjÞjðCh� logðh�ÞÞN ; ð4:13Þ

where N ¼ 0; 1; 2; . . . ; and wh is the unique solution to the discrete equation (2.9).

Proof. It follows as a consequence of (4.5) that

kT00
h;h� �Th;h�kBðEhÞ 6Ch�: ð4:14Þ

Thus, (4.14) and Lemma (4.1) imply that

kT00
h;h�kBðEhÞ 6 kT00

h;h� �Th;h�kBðEhÞ þ kTh;h�kBðEhÞ 6Ch� logðh�Þ: ð4:15Þ

If Ch� logðh�Þ < 1, then kT00
h;h�k < 1 and (3.5) is uniquely solvable. Thus, the iteration scheme (3.7) con-

verges with rate of convergence

kwN
h � whkEh

6 kw0
h � whkEh

ðCh� logðh�ÞÞN ; N ¼ 0; 1; 2; . . .

where C is independent of h and h�. This proves the theorem. �

Since the solution wh to the discrete equation (2.9) converges by Theorem (4.1) to the solution w to the

continuous equation (2.1) with rate OðhÞ; and the approximate solution wN
h to (2.9) computed by the two-

grid method converges to wh with the rate given in Theorem (4.2), we can by choosing the parameters m�

and N ensure that also wN
h converges to w with rate OðhÞ: This is achieved when

max
j2Z2

m

jw0
hðjÞ � whðjÞjðCh� logðh�ÞÞN 6Ch:

The choice of the initial guess in (3.7) gives by Theorem (4.1)

max
j2Z2

m

jw0
hðjÞ � whðjÞj ¼ max

j2Z2
m

jphh�wh� ðjÞ � whðjÞj6Ch�;

and hence we consider the inequality

h�
Nþ1

logðh�ÞN 6Ch

for N and h�: A reasonable choice for h� is h� � h1=3; which implies that the desired accuracy will be reached

asymptotically in N ¼ 3 steps. Note that the choice h� � h1=3 implies that m� should be chosen as
m� ¼ m� 1

3

	 

þ 1:
The complexity of the two-grid method is also OðM2 logðMÞÞ; since the Algorithm (3.7) involves the ap-

plication of the discrete convolution operator (2.8) on the fine grid.
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5. Application to the inverse conductivity problem

The inverse conductivity problem is the mathematical problem behind a recent method for medical
imaging called Electrical Impedance Tomography (EIT). The problem is to recover a bounded and strictly

positive conductivity c in a body X from static electric measurements on the boundary of the body. See, for

example, [14] for further information about EIT. We consider here the two-dimensional problem, i.e.,

X � R2: If we apply a voltage potential f in the Sobolev space H 1=2ðoXÞ (see [3]) on the boundary of X; a
voltage distribution u 2 H 1ðXÞ is induced in X described uniquely as the solution to the conductivity

equation

r � cru ¼ 0 in X; u ¼ f on oX: ð5:1Þ

The voltage potential in X gives rise to a current flux through the boundary given by

c
ou
om

����
oX

;

which can be measured at the boundary. All possible boundary measurements are encoded in the map

Kc : f 7!c
ou
om

����
oX

;

the so-called Dirichlet-to-Neumann map or voltage-to-current map that maps any voltage distribution on

the boundary to the resulting current flux.

The inverse conductivity problem as considered by Calder�on [12] consists of two questions. First, does
the Dirichlet-to-Neumann map Kc determine the conductivity c uniquely, and then if so, how can the

conductivity be reconstructed?

For sufficiently regular conductivities having essentially two derivatives Nachman [26] gave a uniqueness

proof and a reconstruction algorithm, and for less regular conductivities with only one derivative Brown–

Uhlmann [11] generalized the uniqueness result. Both methods are based on solving o-equations of the type

(1.1). In this section we will outline a reconstruction method based on the latter approach and show how

the implementations described above can be used in this context.

Let u be a solution to (5.1) and identify ðz1; z2Þ 2 X with the complex number z ¼ z1 þ iz2: Then
ðv;wÞ ¼ c1=2ðozu; ozuÞ solves the system

ozv ¼ qw;

ozw ¼ qv;
ð5:2Þ

where

q ¼ �c�1=2ozc
1=2: ð5:3Þ

If we assume that c ¼ 1 near the boundary of X then q can be extended smoothly to R2 by setting q ¼ 0 in

R2 n X: The idea in the o-method of inverse scattering theory is then to look for a special exponentially

growing solution Wðz; kÞ ¼ ðW1;W2Þðz; kÞ in R2 to the system (5.2) with

Wðz; kÞ ¼ mðz; kÞeizk; lim
jzj!1

mðz; kÞ ¼ lim
jzj!1

ðm1;m2Þ ¼ ð1; 0Þ: ð5:4Þ

To construct m let eðz; kÞ ¼ expðiðzk þ zkÞÞ ¼ expði2ReðzkÞÞ and define

m	ðz; kÞ ¼ m1ðz; kÞ 	 m2ðz; kÞeðz;�kÞ: ð5:5Þ
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This function satisfies by (5.2) and (5.4) the o-equation

ozm	ðz; kÞ ¼ 	qðzÞeðz;�kÞm	ðz; kÞ; lim
jzj!1

m	ðz; kÞ ¼ 1; ð5:6Þ

from which m	 can be recovered uniquely both theoretically and numerically. This also gives mðz; kÞ by
(5.5). Associated with q is then the function

SðkÞ ¼ � i

p

Z
X
eðz; kÞqðzÞm1ðz; kÞdz1 dz2; ð5:7Þ

the so-called non-physical scattering transform of the potential q:
The usefulness of introducing the scattering transform in the solution of the inverse problem is twofold.

First, the scattering transform can be computed from boundary data [20,22], and second, the conductivity

can be computed from S: This gives a reconstruction procedure consisting of the two steps

Kc!
1
S!2 c:

Note that the stability analysis in [5,23] shows that the EIT problems is ill-posed and that the ill-posedness

comes from the first step. The second step is actually well-posed. Here, we will only consider the numerical

implementation of the second step. See references [20,21,24,34,35] for complete implementations.

To compute c from S consider the �o-equation in the parametric variable k;

ok ~mþðz; kÞ ¼ Sð�kÞeðz;�kÞ~mþðz; kÞ; lim
jkj!1

~mþðz; kÞ ¼ 1: ð5:8Þ

This equation has the unique solution ~mþðz; kÞ; which is highly related to mðz; kÞ (see [20,22]). Moreover,

from this solution we can compute

cðzÞ ¼ ðReð~mþðz; 0ÞÞÞ2: ð5:9Þ

Hence, by knowing S; we can solve (5.8) and then obtain the c from (5.9).

In the next subsections we will use the implementations described in Sections 2 and 3 to compute the
scattering transform for a particular potential and reconstruct the conductivity from the scattering

transform. First we will by solving (5.6) and using (5.7) compute the scattering transform of a particular

potential defined from a conductivity by (5.3). Then we consider the inverse problem and compute the

conductivity from the scattering transform by solving (5.8) and using (5.9).
5.1. Test example

Our test example is a numerical chest phantom consisting of a heart and two lungs, where in one
lung there is an abnormality. To simulate a cross-section of the chest during expiration, the con-

ductivity of the phantom lungs was taken to be 1 mS/cm, the conductivity of the phantom heart was

taken to be the approximate longitudinal conductivity of heart muscle, 6 mS/cm, and the background

conductivity was chosen to be 3 mS/cm. The conductivity of the abnormality was taken to be 4 mS/

cm to simulate a tumor. These conductivities were then scaled by dividing by 3 mS/cm so that the

background conductivity is 1, the conductivity of the phantom heart is 2, the conductivity of the

phantom lungs is 0.33, and the conductivity of the phantom tumor is 1.33. The phantom was then

mollified so that the resulting conductivity is a smooth function on the unit circle; see the top row of
Fig. 3. For this conductivity we have computed the corresponding potential q by (5.3) using numerical

differentiation.



Fig. 3. Top row, original conductivity; middle row, conductivity c1 reconstructed by the one-grid method; bottom row, conductivity c2
reconstructed by the two-grid method.
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We now compute the scattering transform SðkÞ on a 60� 60 uniform k-mesh in the square ½�20; 20�2:
First we solve (5.6) for each k in the grid. Since the potential q is supported inside ½�1; 1�2 the equivalent

periodic integral equation is

m	ðz; kÞ ¼ 1	
Z 2

�2

Z 2

�2

qðz0Þeðz0; kÞ
z� z0

m	ðz0; kÞdz1 dz2; ð5:10Þ

which can be solved numerically by the one- and two-grid implementations described in Section 2 and 3. In

the one-grid implementation we have chosen the grid-size m ¼ 7; and in the two-grid implementation we

have chosen m� ¼ 3; m ¼ 7 and N ¼ 3: Next, to compute S we use the known function eðz; kÞqðzÞ and the
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computed function m1ðz; kÞ ¼ mþðz; kÞ þ m�ðz; kÞ to evaluate the integral (5.7) by the trapezoid rule. Since

(5.6) was solved both using the one- and two-grid implementations, we get two discrete approximationsS1,

S2 of S. The relative l1-difference of the two functions is approximately 1%.
Having computed the scattering transform we now consider the second step in the reconstruction al-

gorithm for the inverse conductivity problem, the computation of c from S: First, we want to solve (5.8)

for ~mþðz; kÞ: Note that since S is not compactly supported, the Eq. (5.8) is not readily in the form (1.1).

Hence, S has to be truncated before the numerical implementations can be used and this cut-off will in-

troduce a systematic error. However, since S is a rapidly decaying function, the error can be neglected. In

our computations we have chosen to cut-off the scattering transform at jkj ¼ 20; which reflects the support

of the pre-computed approximations S1 and S2: To compute the solution to (5.8) we, therefore, consider

the periodic integral equation

~mþðz; kÞ ¼ 1þ
Z 40

�40

Z 40

�40

Sð�k0Þeðz;�k0Þ
k � k0

~mþðz; kÞdk01 dk02;

which is solved using the one- and the two-grid implementations. In the one-grid method we choose the

parameter m ¼ 7 and use the approximation S1; and in the two-grid method we choose m ¼ 7, m� ¼ 3,

N ¼ 3; and use the approximation S2: In both cases the conductivity is computed on a uniform 60� 60 z-
mesh in the square ½�1; 1�2: Next, to compute the conductivity we use (5.9), i.e., we evaluate the computed

solutions to (5.8) at k ¼ 0: This gives two reconstructions based on the one- and two-grid methods. The

reconstructions are displayed in Fig. 3. The relative l1-difference of the two reconstructions is 3%, and the

relative l1-error in either of the reconstructions when compared to the true conductivity is approximately

6%.

We now compare the speed and the memory usage of the one-grid and two-grid method. For different

values of the discretization level (given by the number m; where the size of each cell is h2 for h ¼ 2�m) we

have measured the speed and the memory requirements for computing mþðz; kÞ for fixed k ¼ 1: For the two-
grid method the number of iterations have been chosen according to the analysis in Section 4 as N ¼ 3:
Table 1 contains the results for both methods.

It is clear that the two-grid is superior both concerning memory usage and speed.

Note that for both methods the speed decreases by approximately a factor 4, when going from a grid of

size 2m to a grid of size 2mþ1: This is expected since the the complexity is OðM2 logðMÞÞ ¼ Oðm22mÞ for

M ¼ 2m:
Next, we consider the accuracy of the one-grid method. Since the true solution mþðz; kÞ is not known

explicitly, we have taken the most accurate approximation as the true solution and compared it to the other
approximations. In this test we have again taken the parameter k ¼ 1: Let ðmþÞh denote the solution to the

discrete version of (5.10) at discretization level h ¼ 2�m and define the error
Table 1

Speed and memory usage for computing the function mþðz; 1Þ by the one-grid and two-grid methods, respectively

m m� Memory (in megabytes) Speed (in seconds)

One-grid Two-grid One-grid Two-grid

6 3 106 104 1 1

7 3 120 113 3 2

8 4 173 148 18 8

9 4 386 286 110 43

10 5 1252 836 450 176

The quantity m� applies only to the two-grid computation.



Table 2

Analysis of the convergence of the approximate solution mþhðz; 1Þ computed by the one-grid method to the true solution mþðz; 1Þ:

m Error Em Ratio Em=Emþ1

3 0.5274 2.4

4 0.2173 2.0

5 0.1109 2.5

6 0.0436 1.6

7 0.0272 2.5

8 0.0107 2.3

9 0.0048

Table 3

Error EN
m;m� for different choices of N and m� for the two-grid method

m� N

0 1 2 3 4 5 6 7

6 0.36 0.049 0.014 0.0036 0.00094 0.00037 8.4E) 05 2.9E) 05

7 0.21 0.025 0.0071 0.0018 0.00045 0.00018 4.1E) 05 1.5E) 05

8 0.094 0.011 0.0031 0.00078 0.00019 7.6E) 05 1.8E) 05 6.5E) 06

9 0.03 0.0037 0.0010 0.00026 6.2E) 05 2.5E) 05 6.9E) 06 3.0E) 06

In each case we have chosen the fine grid parameter m ¼ 10.
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Em ¼ kðmþÞh � phh0 ðmþÞh0 kEh
;

where h0 corresponds to the choice m ¼ 10: As before phh0 denotes the transition operator from the fine grid

to the coarse grid, and Eh is a space of matrices equipped with the sup-norm. Table 2 shows the results of

the convergence analysis.

Recall that Theorem 4.1 shows that the one-grid method has accuracy OðhÞ: Since h is decreased by a
factor of two when the parameter m in Table 2 is increased by one, we would expect the error to be de-

creased by a factor two as well. Looking at the last column of Table 2 we observe that most of the numbers

are sufficiently close to two, in order to conclude that the numerical convergence analysis gives evidence for

the theoretical convergence analysis.

For the two-grid method the relevant error corresponding to (4.13) is

EN
m;m� ¼ kðmþÞNh � ðmþÞhkEh

;

where ðmþÞNh is the approximate solution to the discrete version of (5.10) computed by the two-grid method

computed at discretization level h ¼ 2�m with the iteration number N and the coarse grid defined by m�: To
test the convergence rate for the two grid method we have for different choices m� and N computed the error
EN

m;m� . The fine grid parameter is fixed at m ¼ 10: As above, we have chosen k ¼ 1: Table 3 contains the

results.

As expected we see immediately from Table 3 that the error decreases as the iteration number N grows

and as h� decays (m� grows). From a more detailed inspection we can draw two conclusions: First, the error

ratio ENþ1
m;m�=E

N
m;m� seems to be independent of m� (i.e., h�) and seems to vary with N in a way which is not

obvious. Second, the error ratio EN
m;m�=E

N
m;m�þ1 seems to be independent of N and seems to grow with m�: The

numerical analysis indicates that there is an intimate connection between the discretization level, the it-

eration number, and the error. However, the results in Table 3 do not explicitly support the results given in
Theorem 4.2.
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6. Conclusion

We have presented a method for computing the solution to �o-equations of the form �ow ¼ T ðkÞwðkÞ.
One-grid and two-grid versions of the multigrid method of Vainikko [33,38] are applied with a FFT

implementation. We prove that the accuracy of the method is order h. We show that �o-equations in the

form above appear naturally in the context of the inverse conductivity problem, which is the underlying

mathematical model in electrical impedance tomography (EIT). With the use of the implementations we

solved first the forward problem of computing the scattering transform from a known conductivity, and

second the inverse problem of computing the conductivity from the scattering transform. Both prob-

lems were based on solving a o-equation, and the results show that we have a fast and reliable im-

plementation of a solver for such equations. Moreover, the numerical results give evidence for the
accuracy of the methods.
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